Effects of anandamide on potassium channels in rat ventricular myocytes: a suppression of I(to) and augmentation of K(ATP) channels.
نویسندگان
چکیده
Anandamide is an endocannabinoid that has antiarrhythmic effects through inhibition of L-type Ca(2+) channels in cardiomyocytes. In this study, we investigated the electrophysiological effects of anandamide on K(+) channels in rat ventricular myocytes. Whole cell patch-clamp technique was used to record K(+) currents, including transient outward potassium current (I(to)), steady-state outward potassium current (I(ss)), inward rectifier potassium current (I(K1)), and ATP-sensitive potassium current (I(KATP)) in isolated rat cardiac ventricular myocytes. Anandamide decreased I(to) while increasing I(KATP) in a concentration-dependent manner but had no effect on I(ss) and I(K1) in isolated ventricular myocytes. Furthermore, anandamide shifted steady-state inactivation curve of I(to) to the left and shifted the recovery curve of I(to) to the right. However, neither cannabinoid 1 (CB(1)) receptor antagonist AM251 nor CB(2) receptor antagonist AM630 eliminated the inhibitory effect of anandamide on I(to). In addition, blockade of CB(2) receptors, but not CB(1) receptors, eliminated the augmentation effect of anandamide on I(KATP). These data suggest that anandamide suppresses I(to) through a non-CB(1) and non-CB(2) receptor-mediated pathway while augmenting I(KATP) through CB(2) receptors in ventricular myocytes.
منابع مشابه
Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats
Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...
متن کاملSynthesis and Vasorelaxant Effect of 9-aryl-1,8-acridinediones as Potassium Channel Openers in Isolated Rat Aorta
ATP-sensitive potassium (KATP) channel openers have a relaxation effect due to the lower cellular membrane potential and inhibit calcium influx. There has been considerable interest in exploring KATP channel openers in the treatment of various diseases such as cardiovascular, cerebrovascular, and urinary system disease and premature labor. The purpose of this study was to synthesize 3,3,6,6-tet...
متن کاملSynthesis and Vasorelaxant Effect of 9-aryl-1,8-acridinediones as Potassium Channel Openers in Isolated Rat Aorta
ATP-sensitive potassium (KATP) channel openers have a relaxation effect due to the lower cellular membrane potential and inhibit calcium influx. There has been considerable interest in exploring KATP channel openers in the treatment of various diseases such as cardiovascular, cerebrovascular, and urinary system disease and premature labor. The purpose of this study was to synthesize 3,3,6,6-tet...
متن کاملGating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...
متن کاملThe Blocking Activity of Different Toxins against Potassium Channels Kv3.4 in RLE Cells
Background: K+ channel toxins are essential tools for the first purifications, analysis of subunit structures and brain localization of voltage-gated K+ (Kv) channels. The effects of a lot of toxins on Kv are not fully known. Methods: Using whole-cell patch clamping technique the action of a series of toxins on Kv3.4 current in rat liver cells with expressed Kv3.4 channels (RLE) cloned cells wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 302 6 شماره
صفحات -
تاریخ انتشار 2012